KOLHAN UNIVERSITY, CHAIBASA JHARKHAND

Revised Curriculum and Credit Frame work for SEM – I as per FYUGP, NEP- 2020 (U.G. Mathematics – 2022 Onward)

University Department of Mathematics Kolhan University, Chaibasa West Singhbhum, Jharkhand-833202

UNIVERSITY DEPARTMENT OF MATHEMATICS KOLHAN UNIVERSITY CHAIBASA

Four-Year under Graduate Programme (FYUGP)

As per Provisions of NEP-2020 to be implemented from Academic Year 2022-23

COMPOSITION OF BOARD OF STUDIES

1. Dr. Bijay Kumar Sinha

Head, University Department of Mathematics, Kolhan University Chaibasa

2. Mr. Mahendra Kumar Rana

Assistant Professor,
University Department of Mathematics,
Kolhan University Chaibasa

3. Dr. Md. Moiz. Ashraf

Head, P.G. Department of Mathematics Karim City, College, Jamshedpur

4. Dr. P. C. Banerjee

Assistant Professor,
P.G. Department of Mathematics
Karim City, College, Jamshedpur

(Dr. Bijay Kumar Sinha)

(Chairman & Head)
University Department of Mathematics,
Kolhan University, Chaibasa.

P.G. Department of Mathematics, Kolhan University, Chaibasa

Index								
Semester	Paper	Code	Course Title	Credit				
I	Multi-Disciplinary /Introductory Regular Course	MDC/IRC	Introduction Course in Mathematics	3				

Program: Certificate	Year: First	Semester: I					
Class: UG							
Subject: Mathematics							
Course Code: MDC/IRC	Course Title: Multi – Disciplinary/Introductory						
	RegularCourse						

Course Learning Outcomes: This course will enable the students to:

- a) Understand the notions of logic and Mathematical Induction with proofing strategies.
- b) Basic concepts of sets relation and functions.
- c) A basic concept of number theory.
- d) A basic concept of real Analysis.

Credit: 3 (Theory)		Compulsory			
Full Marks: 75		Time: 3 Hours			
Unit	Content				
I	Logic : statemer Mathematical ind	nt, truth table, quantifiers, proof strategies, uction.	8 h		
II	Sets and functions and relations : reflexive, symmetric, asymmetric and transitive relations, injective, surjective and bijective functions.				
III	Theory of numbers : Modular arithmetic, divisibility, Congruence relation, Linear congruence and Chinese remainder theorem, Fermat's little theorem, Wilson's theorem, arithmetic functions and set of residue classes modulo n : ${}^{\prime}Z_{n}{}^{\prime}$.				
IV	Real number system : Field and order structure, bounded sets, Supremum and infimum of sets, Completeness property of set of Real number \mathbb{R} .				
V	convergent seque	series: Limit of a sequence, convergent and non- ence, Limit points of a sequence, Positive term series, divergent series, Comparison test of positive term	11 h		

*Remarks -: No Internal Exam

Books Recommended:

- 1. R.G. Bartle and D. R. Sherbert (2002). Introduction to Real Analysis (3rd Edition), John Wiley and Sons (Asia) Pvt. Ltd., Singapore.
- 2. R. K. Dwivedi (2019). Real Analysis, 1 st Ed., Pragati Prakashan.
- 3. S.C. Mallik and S. Arora-Mathematical Analysis, New Age International Publications.
- 4. F. Cajori (1904). An Introduction to The Modern Theory of Equations. The Macmillan Company.
- 5. Kolman, Busby and Ross (2002). Discrete Mathematical Structure, 4 th Ed., Pearson Education Asia.
- 6. V. Rajaraman (1993). Computer oriented numerical methods, Prentice Hall India.