KOLHAN UNIVERSITY, CHAIBASA JHARKHAND

Revised Curriculum and Credit Frame work for SEM – I as per FYUGP, NEP- 2020 (U.G. Mathematics – 2022 Onward)

University Department of Mathematics Kolhan University, Chaibasa West Singhbhum, Jharkhand-833202

UNIVERSITY DEPARTMENT OF MATHEMATICS KOLHAN UNIVERSITY CHAIBASA

Four-Year under Graduate Programme (FYUGP)

As per Provisions of NEP-2020 to be implemented from Academic Year 2022-23

COMPOSITION OF BOARD OF STUDIES

1. Dr. Bijay Kumar Sinha

Head, University Department of Mathematics, Kolhan University Chaibasa

2. Mr. Mahendra Kumar Rana

Assistant Professor,
University Department of Mathematics,
Kolhan University Chaibasa

3. Dr. Md. Moiz. Ashraf

Head, P.G. Department of Mathematics Karim City, College, Jamshedpur

4. Dr. P. C. Banerjee

Assistant Professor,
P.G. Department of Mathematics
Karim City, College, Jamshedpur

(Dr. Bijay Kumar Sinha)

(Chairman & Head)
University Department of Mathematics,
Kolhan University, Chaibasa.

P.G. Department of Mathematics, Kolhan University, Chaibasa

		Index		
Semester	Paper	Code	Course Title	Credit
	Major 1	MJ-1	Calculus	4
I	Minor-1	MN-1	Calculus	4

Program: Certificate	Year: First	Semester: I		
Class: UG				
Subject: Mathematics				
Course Code: MJ-1	Course Title: Calculus			

Course Learning Outcomes: This course will enable the students to:

- a) Assimilate the notions of the boundary of a sequence and the convergence of a series of real numbers Calculate the limit and examine the continuity of a function at a point.
- b) Understand the consequences of various mean value theorems for differentiable functions.
- c) Sketch curves in Cartesian and polar coordinate systems.
- d) Apply derivative tests in optimization problems appearing in social sciences, physical sciences, life sciences and a host of other disciplines.

f) Various integration techniques learn which help in engineering and research.

Credit: 4 (Theory) Compulsory				
Full Marks: 75 Time: 3 Hours				
Unit	Content	Hours		
I	Differential calculus: Differentiability of a real valued function, Geometrical interpretation of differentiability, Rules of differentiation, Chain rule of differentiation; Darboux's theorem, Rolle's theorem, Lagrange's mean value theorem, Cauchy's mean value theorem, Geometrical interpretation of mean value theorems, Successive differentiation, Leibnitz's theorem.	15 h		
II	Expansions of Functions: Maclaurin's and Taylor's theorems for expansion of a function in an infinite series, Taylor's theorem in finite form with Lagrange, Cauchy and Roche—Schlomilch forms of remainder, Maxima and minima.	12 h		
III	Curvature and Asymptotes: Curvature; Asymptotes of general algebraic curves, Parallel asymptotes, Asymptotes parallel to axes; Symmetry, Concavity and convexity, Points of inflection, Tangents at origin, Multiple points, Position and nature of double points.	13 h		
IV	Curve Tracing: Tracing of Cartesian, polar and parametric curves; Envelope and evolutes.	10 h		
V	Integral Calculus: Reduction formulae, derivations and illustrations of reduction formulae of the type $\int \sin^n x dx$, $\int \cos^n x dx$, $\int \tan^m x dx$, $\int \sin^n x \cos^m x dx$ and $\int \sin^m x \cos nx dx$, parametric equations, parameterizing a curve, arc length, arc length of parametric curves, Area of bounded curve, volume and area of surface of revolution.	10 h		
Sessional Internal Assessment (SIA) Full Marks – 25 Marks A – Internal written Examination – 20 Marks (1 Hr) B – Over All Performance including Regularity – 05 Marks				

Books Recommended:

- 1. R. K. Dwivedi, Calculus, 1st Edition, Pragati Prakashan, Meerut, India (2019).
- 2. Howard Anton, I. Bivens & Stephan Davis (2016). Calculus (10th edition). Wiley India.
- 3. Gabriel Klambauer (1986). Aspects of Calculus. Springer-Verlag.
- 4. Wieslaw Krawcewicz & Bindhyachal Rai (2003). Calculus with Maple Labs. Narosa.
- 5. Gorakh Prasad (2016). Differential Calculus (19th edition). Pothishala Pvt. Ltd.
- 6. George B. Thomas Jr., Joel Hass, Christopher Heil & Maurice D. Weir (2018). Thomas' Calculus (14th edition). Pearson Education.

Program: Certificate	Year: First	Semester: I		
Class: UG				
Subject: Mathematics				
Course Code: MN-1	Course Title: Calculus			

Course Learning Outcomes: This course will enable the students to:

- a) Assimilate the notions of limit of a sequence and convergence of a series of real numbers.
- b) Calculate the limit and examine the continuity of a function at a point.
- c) Understand the consequences of various mean value theorems for differentiable functions.
- d) Sketch curves in Cartesian and polar coordinate systems.
- e) Various integration techniques appearing in engineering and research.
- f) Basic idea of sequence and series.

Credit: 4 (Theory) Compulsory			
Full Marks: 75 Time: 3 Hours			
Content		Hours	
Geometrical Chain rule of Lagrange's n Geometrical	interpretation of differentiability, Rules of differentiation, of differentiation; Darboux's theorem, Rolle's theorem, nean value theorem, Cauchy's mean value theorem, interpretation of mean value theorems, Successive	15 h	
Asymptotes: Curvature; Asymptotes of general algebraic curves, Parallel asymptotes, Asymptotes parallel to axes; Symmetry, Concavity and convexity, Points of inflection, Tangents at origin, Multiple points, Position and nature of double points.			
sums and the Properties of	ne definite integral, Fundamental theorem of calculus, definite integrals, Integration Techniques, Integration of	15 h	
reduction fo ∫ sin ⁿ xcos ^m parameterizin Area of bound Sessiona	rmulae of the type $\int \sin^n x dx$, $\int \cos^n x dx$, $\int \tan^m x dx$, $x dx$ and $\int \sin^m x \cos nx dx$, parametric equations, $\log a$ curve, arc length, arc length of parametric curves, ded curve, volume and area of surface of revolution. al Internal Assessment (SIA) Full Marks – 25 Marks	15 h	
	Differential Geometrical Chain rule of Lagrange's r Geometrical differentiatio Asymptotes: Parallel asym and convexity Position and Integration: sums and th Properties of irrational alge Integral Cale reduction fo ∫ sin ⁿ xcos ^m parameterizin Area of boun Sessiona	Content Differential calculus: Differentiability of a real valued function, Geometrical interpretation of differentiability, Rules of differentiation, Chain rule of differentiation; Darboux's theorem, Rolle's theorem, Lagrange's mean value theorem, Cauchy's mean value theorem, Geometrical interpretation of mean value theorems, Successive differentiation, Leibnitz's theorem. Asymptotes: Curvature; Asymptotes of general algebraic curves, Parallel asymptotes, Asymptotes parallel to axes; Symmetry, Concavity and convexity, Points of inflection, Tangents at origin, Multiple points,	

Books Recommended:

- 1. R. K. Dwivedi (2019). Calculus, 1st Edition, Pragati Prakashan, Meerut, India.
- 2. Howard Anton, I. Bivens & Stephan Davis (2016). Calculus (10th edition). Wiley India.
- 3. Gabriel Klambauer (1986). Aspects of Calculus. Springer-Verlag.
- 4. Wieslaw Krawcewicz & Bindhyachal Rai (2003). Calculus with Maple Labs. Narosa.
- 5. Gorakh Prasad (2016). Differential Calculus (19th edition). Pothishala Pvt. Ltd.
- 6. George B. Thomas Jr., Joel Hass, Christopher Heil & Maurice D. Weir (2018). Thomas' Calculus (14th edition). Pearson Education.

B – Over All Performance including Regularity – 05 Marks