

Syllabus for Four Year Undergraduate Programme (FYUGP) of

Bachelor of Science in Information Technology (B.Sc. IT)

Semester - 3

With Effect From Academic Year 2022 - 2023

As Per Revised Curriculum and Credit Framework for the FYUGP under the provisions of NEP - 2020

B.Sc.I.T.CourseStructureF.Y.U..P.(Semester -III)

Sem	Paper Code	PaperTitle	L-T-P	Credits	Contact Hours
	AEC-3	Language and Communication Skills:MIL-2,Modern Indian Lang. TRL)		2	
	SEC-3	SkillEnhancementCourse-3		3	
	MDC-3	Multi-disciplinaryCourse-3		3	
III	MN-1B (Theory)	Logical Organization of Computer	4-0-0	4	60
	MJ-4(Theory)	Database Management System	3-0-0	3	45
	MJ-5(Theory)	Object Oriented Programming through C++	3-0-0	3	45
	MJ(Practical-3)	DBMS and C++ Lab	0-0-2	2	60
		TotalCredits		20	

MN-1B:Logical Organization of Computer			
4 Credits	60 Class Hours	Semester III.	

OBJECTIVES:

Describe performance evaluation of computers, computer architecture and organization, computer arithmetic, Memory and CPU design.

Course Outcomes:

After the completion of this course, students will be able to:

- Understand the Truth Table.
- Identify the number of variables and their simplification importance.
- Understand different circuits for the implementation of Boolean equations.
- Describe performance evaluation of computers, computer architecture and organization, computer arithmetic, Memory and CPU design.

Detailed Syllabus:

	Data Representation: (8 Classes)
Unit-1	Data Types, Number System, Complements, Subtraction of Unsigned Numbers, Fixed-Point Representation, Floating-Point Representation, Other Binary Codes, Other Decimal Codes, Error Detection Code.
Unit-2	Digital Logic Circuits: (10 Classes) Digital Computers, Logic Gates, Boolean algebra, Complement of a Function, Map Simplification, Product-of-sum simplification, Combinational Circuits, Half Adder, Full Adder, Flip-Flops.
Unit-3	Digital Components: (12 Classes) Integrated Circuits, Decoders, Encoders, Multiplexers, Registers, Register with parallel load, Shift Registers, Bidirectional Shift register with parallel load, Binary Counters, Binary counter with parallel load
Unit-4	Central Processing Unit: (15 Classes) Introduction, General Register Organization, Stack Organization, Register Stack, Memory Stack, Instruction Formats, Addressing Modes, Data Transfer and Manipulation, Program Control, Program Interrupt, Types of Interrupts, Reduced Instruction Set Computer (RISC).
Unit-5	Memory Organization: (15 Classes) Memory Hierarchy, Main Memory, RAM and ROM Chips, Memory Address Map, Memory Connection to CPU, Auxiliary Memory, Magnetic Disks and Tape, Associative Memory. Hardware Organization, Read/Write Operation, Cache Memory, Associative Mapping, Direct Mapping, Set-Associative Mapping, Virtual Memory, Address Space and Memory Space, Address Mapping Using Pages, Associative Memory Page Table, Page Replacement, Memory Management Hardware.

Text Books:

- Mano M., "Computer System Architecture", Prentice Hall of India, New Delhi, 1995.
- Ram. B., "Computer Fundamentals: Architecture and Organization", 3rdEdition, New Age International Publication, New Delhi, 2000

MJ-4 (Th): Data Base Management System			
3 Credit	45 Class Hours	Semester III.	

Objective:

- Provide an introduction to the management of database systems.
- Understand the fundamentals of relational systems including data models, database architectures, and database manipulations.
- To understand how to create a database. To know about the manipulate a database using SQL

Course Outcomes: At the end of the course, students will be able to:

- Design a database for a given set of requirements.
- Use SOL.
- Apply normalization techniques on given database. Improve the database design by normalization.

Detailed Syllabus:

	Databases and Database Users: Introduction, An example, Characteristics of the			
	Database Approach, Advantages of Using DBMS Approach, A Brief History of Database			
Unit 1	Applications, Components of Database.			
5 classes	Database System Concepts and Architecture: Data Models, Schemas, and Instances,			
	Three-schema Architecture and Data Independence, Database Languages and Interfaces,			
	The Database System Environment, Centralized and Client-Server Architectures.			
	Entity-Relationship(ER) Model			
Unit 2	Entity Types, Entity Sets, Attributes and Keys, Relationship Types, Relationship Se			
8 classes	Roles and Structural Constraints, Weak Entity Types, Refining the ER Design for the			
	Sample Database, ER Diagrams, Naming Conventions and Design Issues			
	Relational Model : Relational Model Concepts, Relational Model Constraints and Relational Database Schemas, Update Operations, Transactions and Dealing with			
	Constraint Violations, Unary Relational Operations: SELECT and PROJECT, Relational			
11-24 2	Algebra Operations from SET Theory, Binary Relational Operations: JOIN and			
Unit 3	DIVISION			
10 classes	Relational-Database Design: Pitfalls in Relational-Database Design, Functional			
	Dependencies, Decomposition, Desirable Properties of Decomposition, First Normal			
	Form, Second Normal Form, Third normal Form, Boyce-Codd Normal Form, Fourth			
	Normal Form.			
	Structured Query Language (SQL): Introduction, SQL Environment, Classification of			
	SQL Statements, Data Types, Operators, Integrity Constraints, Data Definition-Creating a			
	Database, Creating a Table, Changing a Table Definition, Removing a Table, Granting			
	and Revoking Privileges to Users.			
	Data Manipulation: Inserting, Updating & Deleting Data from database, Simple			
Unit 4	Queries, More Complex SQL Queries, Aggregate Functions, Order by Clause, Group by			
12 classes	Clause, Having Clause, Joins, Sub Queries.			
	Transactions and Concurrency Control: Transaction Concept, Transaction State,			
Unit 5	Desirable Properties of Transactions, Concurrent Executions, Serializability,			
10 classes	Recoverability, Lock-Based Protocols, Timestamp-Based Protocols and Deadlock			
	Handling.			

Text Books:

- 1. Abraham Silberschatz, Henry F. Korth, S. Sudharshan, "*Database System Concepts*", 7th Edition, Tata McGraw Hill, 2019
- 2. Elmasri and Navathe, "Fundamentals of Database Systems", 7th Edition, Addison Wesley, 2016

MJ-5(Th): Object Oriented Programming through C++		
3Credit	45Class Hours	Semester-III.

Objectives:

- To learn basic concepts of OOPS.
- Creating C++ programs.
- Understand expressions and control structures.

Course Outcomes:

After the completion of this course, students will be able to:

- Understand properties of OOPS.
- Learn the use of constructor and destructor.
- Understand file management.

Detailed Syllabus:

	Introduction to Object Oriented Programming: Basic concept of OOP, Comparison of Procedural Programming and OOP, Benefits of OOP, C++ compilation, Abstraction,		
Unit 1	Encapsulation, Inheritance, Polymorphism, Difference between C and C++. Tokens,		
10 classes	Keywords, C++ identifiers; Variables and Constants: Integer, character and symbolic		
	constants; Dynamic initialization of variables, Reference variables, Basic data types in		
	C++, Operators, Types of operators in C++, Precedence and associativity of operators,		
	Manipulators.		
	Decision and Control Structures		
Unit 2	if statement, if-else statement, switch statement, Loop: while, do-while, for; Jump		
5classes	statements: break, continue, go to.		
	Introduction to Classes and Objects		
	Classes in C++, class declaration, declaring objects, Defining Member functions, Inline		
Unit 3	member function, Array of objects, Objects as function argument, Static data member		
10classes	and member function, Friend function and friend class. Constructors and Destructors		
	Default constructor, Parameterized constructor, Copy constructor and its use,		
	Destructors, Constraints on constructors and destructors, Dynamic initialization of		
	objects.		
	Operator Overloading: Arguments and return value; overloading unary and binary		
	operators: arithmetic operators, manipulation of strings using operators; Type		
Unit 4	conversions. Virtual Functions and Polymorphism, Categorization of polymorphism		
10classes	techniques: Compile time polymorphism, Run time polymorphism.		
Unit 5 10classes	File Handling: File classes, Opening and Closing a file, File modes, Manipulation of file pointers, Functions for I/O operations. Arrays, pointers, structures, unions.		

Text Books:

- E.Balagurusamy: Object oriented programming with C++
- K.R.Venugopal: Mastering C++
- Bjarne Stroustrup: The C++ programming language.

MJ-3(Pr): PRACTICAL For MJ-4 & MJ-5			
2Credit	30Classes (60 Hours)	Semester III	

List of Programs as Assignments for MJ-4:

1. Create a table **Employee** with the following fields:

(Employee_Id, First_Name, Last_Name, Hire_Date, Job_Id, Salary, Mgr_Id, Department_Id) Use appropriate data type and perform following task-

- Add a new field 'Address Char(10)'.
- Modify the size of Address column to 20.
- Insert any 5 records into the table.
- Display the structure of Employee table.
- List out details of all employees.
- Remove the field 'Address' from the table.
- Change the name of the table from Employee to KU_Emp
- 2. Create an Emp table with the following fields:

(EmpNo, EmpName, Job, Basic, DA, HRA, PF, GrossPay, NetPay) (Calculate DA as 30% of Basic and HRA as 40% of Basic and PF as 12.5% of Basic)

- Insert Five Records in the following fields (EmpNo, EmpName, Job, Basic)
- Calculate DA, HRA, PF, GrossPay (Basic+DA+HRA) and NetPay (GrossPay-PF) of all employees.
- Display all records.
- If NetPay is less than <Rs. 10,000 add Rs. 1200 as special allowances.
- Delete all 'Clerks' having Basic 5000 or less.
- 3. Create a table named Library with appropriate data type of following structure:

(Book_id, Title, Author, Subject, Publisher, Quantity, Price, Student_id) Apply following constraints on the field

- Book_id must be Primary Key
- Title must be Unique
- Quantity should be more than 100
- Price should be between Rs. 10 and Rs. 5000
- View all the constraints from the data dictionary
- ❖ Add Foreign Key constraints to Student_id column which references to Student(Student_id). [Create Student(Roll, Name, Book_id(PK)) before adding the Foreign Key constraints]
- **.** Describe the structure of the table.
- Insert records to verify the constraints.
- 4. Create Teacher table with the following fields(Name, DeptNo, Date_of_joining, DeptName, Location, Salary)
 - Insert five records
 - Give Increment of 25% salary for Mathematics Department.
 - Perform Rollback command
 - Give Increment of 15% salary for Commerce Department
 - Perform commit command

- 5. A company wishes to maintain a database to automate its operations. Company is divided into certain departments and each department consists of employees. The following two tables describes the automation schemas: Dept (deptno, dname, loc) Emp (empno, ename, job, mgr, hiredate, sal, comm, deptno)
 - Create above tables with appropriate data types
 - Insert details of three departments and details of 5 employees.
 - List the employee name and salary, whose experience is greater than 10 years.
 - Display unique jobs from the table.
 - Display employees of department no. 20 and 30 who have salary between 20000 and 30000.
- 6. Consider the table Dept (deptno, dname, loc) Emp (empno, ename, job, mgr, hiredate, sal, comm, deptno) created earlier, write following query:
 - Display the manager who is having maximum number of employees working under him?
 - List the names of employees, who take highest salary in their departments.
 - Create a view Emp_Dept, which contains Employee name, job, salary and department name.

List of Programs as Assignments for MJ-5:

- Write a C++ Program to display Names, Roll No., and grades of 3 students who have appeared in the examination. Declare the class of name, Roll No. and grade. Create an array of class objects. Read and display the contents of the array.
- Write a C++ program to declare Struct. Initialize and display contents of member variables.
- Write a C++ program to declare a class. Declare pointer to class. Initialize and display the contents of the class member.
- Given that an EMPLOYEE class contains following members: data members: Employee number, Employee name, Basic, DA, IT, Net Salary and print data members.
- Write a C++ program to read the data of N employee and compute Net salary of each employee (DA=52% of Basic and Income Tax (IT) =30% of the gross salary).
- Write a C++ to illustrate the concepts of console I/O operations.
- Write a C++ program to use scope resolution operator. Display the various values of the same variables declared at different scope levels.
- Write a C++ program to allocate memory using new operator.
- Write a C++ program to create multilevel inheritance. (Hint: Classes A1, A2, A.
- Write a C++ program to use pointer for both base and derived classes and call the member function. Use Virtual keyword.